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The effect of a passive cross-stream temperature gradient 
on the evolution of temperature variance and heat flux in 

grid turbulence 
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(Received 15 January 1982 and in revised form 4 October 1982) 

The evolution of temperature variance and heat flux in decaying grid turbulence with 
a linear cross-stream temperature gradient is studied by producing the temperature 
gradient by means of two different methods : (a )  by placing a ‘ mandoline ’ (Warhaft 
& Lumley 1978) downstream from the grid but with its wires differentially heated 
for the present study, and ( b )  by differentially heating ribbons of nichrome (a 
‘toaster’) placed in the plenum chamber of the wind tunnel. For the former method 
the initial thermal/mechanical lengthscale ratio L,/L was varied by changing the 
mandoline configuration. For this method it  is shown that the gradient causes L,/L 
to equilibrate to a value of about 0.9 regardless of its initial value, and that when 
this value is achieved the temperature variance increases approximately linearly with 
time. The toaster was used to produce a temperature gradient without the associated 
initial temperature variance (and initial thermal lengthscale) that  is necessarily 
produced by the mandoline wires; for the toaster the temperature variance was 
produced solely by the action of turbulence against the temperature gradient. For 
this experiment too, the thermal variance grew linearly with time, and L,/L was 
approximately the same as the equilibrium value for the mandoline experiments. The 
equilibrium value of the ratio of temperature-variance production to  temperature- 
variance dissipation was approximately 1.5 for all of the experiments. The ratio of 
the mechanical-dissipation/thermal-dissipation timescales was also found to  equili- 
brate, but there was considerably more scatter in the data for this parameter. The 
values of the equilibrium length- and timescale ratios were not affected by the 
magnitude of the temperature gradient, which was varied for both experiments. Good 
transverse homogeneity in the thermal field was achieved in all cases, in contrast with 
previous experiments (using heated grids). 

1. Introduction 
Corrsin (1952) predicted for non-decaying isotropic turbulence flowing with a mean 

velocity U in the x-direction that an imposed passive linear cross-stream temperature 
gradient d T / d z  (from here on denoted as ,8) will maintain itself, and is independent 
of x. The reason for this is that  a t  any point in this flow there is equal probability 
of a particle arriving at that point with a deficit or an excess of temperature. Thus 
the mean temperature along a mean streamline will not change. Although Corrsin 
only considered a stationary non-decaying (non-evolving) flow, his prediction for the 
constancy of ,8 has had remarkable confirmation for decaying grid turbulence in 
which the temperature gradient was produced by differentially heating the bars of 

t Present address : Department of Chemical Engineering, The Johns Hopkins University, 
Baltimore, Maryland 21218. 
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FIGURE 1. Evolution of @/B2 from previous experiments : A, Wiskind (1962) ; , Alexopoulos & 
Keffer (1971); ., Venkataramani & Chevray (1978). The values have been obtained by averaging 
over the core of the flows. 

the grid (Wiskind, 1962; Alexopoulos & Keffer 1971 ; Venkataramani & Chevray 
1978). In all of these experiments /3 = constant and its value was independent of x .  

However, the streamwise evolution of the temperature variance p and the gradient 
(cross-stream) heat flux 8w in these flows is poorly understood from both experimental 
and theoretical viewpoints. 

as a function o f x / M ,  where M is the grid mesh length, for 
- the three experiments cited ab0ve.t It is not clear from these experiments whether 
O2 increases or decreases with x / M :  Wiskind (1962) and Alexopoulos & Keffer (1971) 
both show an increase (after about x / M  = 50) but the rates are different; 
Venkataramani & Chevray (1978) show a dramatic increase followed by an equally 
dramatic decrease, but their experiment only extends to x / M  x 50. Part of the reason 
for the large scatter in these data probably lies in the method of generating the 
thermal profile: in all cases it was generated by heating the bars of the grid. Heating 
the grid bars differentially not only produces a temperature gradient ; i t  also produces 
a cross-stream gradient in 82 since, the hotter the bar, the greater temperature 
variance produced in its wake. Figure 2 shows the r.m.s. 8 cross-stream profiles for 
the above-cited experiments. Cross-stream variations of r.m.s. O of 30-40 % occur in 
only few mesh lengths, a situation far from ideal, which is for no variation of in 
the cross-stream direction but only for a mean gradient p .  Furthermore, as has been 
shown by Warhaft & Lumley (1978), heating a grid also produces significant 
longitudinal heat flux, and this coupling of the velocity and temperature fluctuations 
probably also affects the evolution of p. Ideally there should be no coupling between 
the temperature fluctuations and the longitudinal velocity in such an experiment; 
the only flux should be down the temperature gradient, i.e. in the cross-stream 
direction. 

From a theoretical viewpoint, the evolution of 82 has been examined using classical 
dispersion theory. For a linear temperature gradient in decaying turbulence, but 
without the action of thermal dissipation, Sullivan (1976) finds that 82 should increase 

t We have determined @/p2 by averaging ?across the core of the flows for these experiments. 
Sullivan (1976) finds a faster rate of increase of 0 2 / p  for@he Alexopoulos & Keffer (1971) experiment 
by excluding from his averaging procedure values of O2 that initially decline with distance. 

Figure 1 shows 



Evolution of temperature variance and heat $uz in grid turbulence 325 

-20 
... . ... ,, :. - 

I I I I I I 

30 

/- \ 
I \  

i n  L / . .  ... \ 

-30 -20 1 
- 3  -2 -1 0 1 2 3 

zlM 
FIGURE 2. Departure of r.m.s. 0 from its mean level in the cross-stream direction. (a )  ---, Wiskind, 
x l M  = 71 ; . . ., Alexopoulos & Keffer, x / M  = 60; -.-., Venkataramani & Chevray, x / M  = 55. 
( b )  Wiskind, x / M  = 102; Alexopoulos & Keffer, x / M  = 108; same symbols as for (a) .  The vertical 
bars show the maximum r.m.s. 0-deviation (at x / M  = 80 (a)  and x / M  = 110 ( b ) )  for the results 
to be presented in 3.2. 

linearly with time, i.e. @/p2 of t .  More recently Durbin (1980) has examined this 
problem using two-particle dispersion theory which includes the effects of dissipation 
and he finds that F/p2 K to5.t 

It is instructive to examine the conservation equations for @ and 8w. Assuming 
transverse homogeneity the equations are (Tennekes & Lumley 1972) : 

Here eo is the temperature-dissipation term, p is the pressure fluctuation and po is 
a reference density. Other terms have been defined above. Note that, since the 
gradient is passive, no buoyancy term appears in (2). Equation (1) shows that there 
is both production and dissipation of e'i, and in order to model @(t) i t  is necessary 
to have an understanding of how the gradient production affects the thermal-variance 
dissipation. It should be noted that even for the apparently simple case for which 
p = 0 (the decay of thermal fluctuations) we still have not resolved the question of 
the equilibrium decay rate (Warhaft & Lumley 1978). Equation (2 )  for 8w also 
has a production term, but the dissipation of & is negligible in these flows of 

t We note that in these analyses Sullivan (1976) assumes that the Reynolds number of the 
decaying flow is constant, while Durbin (1980) assumes the turbulence is non-decaying. For the 
decaying turbulence realized in the laboratory the turbulence Reynolds number decreases as t l -n ,  
where TZ x 1.3. 
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moderately high Re and has been neglected ; the destruction of & is effected by the 
temperature-pressure fluctuation-gradient product ; the return to isotropy term. 

For a stationary flow with a non-evolving heat flux, and assuming the thermal 
variance dissipation to be zero, ( 1 )  yields @ K t ,  but if, as is the case in grid 
turbulence, the flow is evolving and there is dissipation, assumptions must be made 
concerning the velocity field and the dissipation mechanisms. For example, if for the 
velocity variance we use the empirical relation 2 x tWn, where n x 1.3 for decaying 
grid turbulence, and if we assume the eddy diffusivity KO (= -Sw/P) is proportional 
to ul, where 1 is the integral scale of the turbulence, then KO K tl-n. Further, if we 
assume that the mechanical to thermal timescale ratio is unity then we may write 
cg = d2/r ,  whereris the mechanical timescale ( = 3216). Substituting these expressions 
for KO and es into ( 1 )  yields that e? is approximately proportional to t2-n = to" , 1.e. ' 

the thermal variance grows at a less-than-linear rate. However, this crude analysis 
relies on simple eddy-diffusivity concepts, and, furthermore, it cannot predict the 
effect of varying the mechanical/thermal timescale ratio on the evolution of e"i, one 
of the primary concerns of this study. Nevertheless it is clear that both dispersion 
theory and a rudimentary examination of the conservation equations suggest an 
increase of @ with time. There is, though, no agreement on the actual rate of increase 
of@, and the available experimental data (figure 1)  shed little light on this question. 

and & in 
decaying grid turbulence with a mean cross-stream temperature gradient. In order 
to avoid the problems of cross-stream inhomogeneity, we will use two new methods 
for the production of the temperature gradient. We will also pay particular attention 
to varying input conditions such as the strength of the temperature gradient, the 
initial thermal scale and the mean tunnel speed. 

- 

Our objective here, then, is to experimentally examine the evolution 

2. Apparatus and method of approach 
The open-circuit vertical wind tunnel (figure 3) was the same as that used in our 

previous studies (Warhaft 1980). The mesh length M of the biplane turbulence- 
generating grid was 0.025 m and the grid bars were 0.476 ern square-sectioned, giving 
a grid solidity of 0.34. The tunnel test section was 200M long and 16M x 16M in 
cross-section. The walls of the tunnel were slightly divergent to ensure a constant 
centreline mean speed with the development of the boundary layer. The mean wind 
speed was 3.4 m/s for most of the mandoline experiments and 6.3 m/s for the toaster 
experiments (see below). 

The temperature profiles were produced by two different methods. For the first 
method a 'mandoline' (Warhaft & Lumley 1978), a parallel array of fine wires, was 
placed downstream from the grid and the wires were differentially heated. This was 
achieved by independently controlling the voltage (and hence current) across each 
wire. Because of the change in resistance with wire heating and because of wall effects, 
'fine tuning' of the current in each wire was needed in order to achieve linear 
temperature gradients, which were varied from 1.81 OC/m to 8.1 "C/rn, for the 
different experiments to be described below. The actual values of the currents used 
are reported in Sirivat (1983). The mandoline wires were 1.27 x m diameter (and 
for a few experiments 2-03 x lop4 m diameter), giving cold-flow Reynolds numbers 
of 26 (and sometimes 42) for the low speeds (3.4 m/s) at which most of the mandoline 
experiments were carried out. It should be noted that when the wires are heated the 
Reynolds number is reduced well below the vortex-shedding Re of approximately 40 
since the viscosity of the surrounding air increases considerably. 
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FIGURE 3. The wind tunnel showing the mandoline and toaster. 

As explained in Q 1 ,  the previous gradient experiments all used differentially heated 
grid bars. This method of producing the temperature gradient also produces an  initial 
temperature variance, a complicating condition since ideally all the temperature 
variance should be created by production against the gradient. When designing the 
present experiment we realized that the same situation would apply to the mandoline : 
it too would produce initial temperature variance as well as the gradient.t Thus we 
sought a different method, one that would produce a linear gradient only. For this 
second method we produced the temperature gradient deep down in the plenum 
chamber (figure 3) by differentially heating nicrome ribbons placed in a parallel array. 
As for the mandoline, this was achieved by independently controlling the current in 
each ribbon. The values of the current in each ribbon are reported in Sirivat (1983). 
The ribbons were 3.175 mm wide and 0101 mm thick and were placed in pairs (giving 
an effective width of about 7 mm). Sixteen pairs of these ribbons equally spaced in 
the plenum chamber were used to form a ‘toaster’, so named because of its 
resemblance to the elements in the kitchen appliance of the same name.S The 

t However, as will be shown in $3, the mandoline produces a far more homogeneous temperature 
field than the heated grid experiments. Furthermore, by means of the mandoline we were able to 
vary the input thermal scale and study its evolution in the presence of the temperature gradient 
(which imposes its own lengthscale). This type of experiment can only be done if there is an initial 
temperature variance, with its own scale, that is different to that produced by the gradient. For 
this type of experiment the mandoline is ideally suited. 

$ To be consistent with our use of the word mandoline (named after the French kitchen utensil 
used to chop and slice vegetables (Warhaft & Lumley 1978)) it  might have been more appropriate 
to use the French term gril2e-pain instead of toaster. In this instance the English word seemed less 
cumbersome. 
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rationale for creating the gradient in the plenum was that any disturbance to the 
flow produced by the nicrome ribbons would be damped out by the screens and the 
contraction (figure 3), and by the time the flow reached the grid a linear temperature 
gradient (in laminar flow) would only be present. Any temperature fluctuations 
subsequently produced would be solely due to the action of the grid turbulence 
against the temperature gradient. 

In  order to produce a linear gradient rather than a series of hot blips above the 
toaster elements, we placed a very coarse screen of sheet metal, with a lattice of 
6-5 mm circular holes and a solidity of 0.46, downstream of the toaster to cause 
turbulent mixing. This was only partially effective; there were blips in the mean 
temperature profile measured in the test section without the grid in the flow (but the 
r.m.s. temperature and velocity were at noise level; the fine screens and contraction 
damped out the disturbance caused by the toaster and coarse screen). However, when 
the grid was placed in the flow, very smooth mean profiles were generated (see $3.1). 
The test-section speed for these toaster experiments was 6.3 m/s. 

Velocity fluctuations were measured with DISA type-55M constant-temperature 
bridges. The u (longitudinal velocity) and w (lateral velocity) components were 
measured with a 90° X-wire array with length-to-diameter ratio l / d  of 200 and 
overheat ratio of 1.8. The wires were 3.2 pm tungsten. Simultaneous temperature 
fluctuations were measured with a 1.27 pm platinum wire (lid = 400) placed close to 
the X-array. The fast-response a.c. temperature bridge was the same as that used by 
Warhaft & Lumley (1978). Measurements of temperature fluctuations in a ‘cold ’ flow 
revealed that the r.m.s. noise level (combined electrical and tunnel) was approximately 
5 x O C .  Temperature-fluctuation measurements were corrected for noise and 
velocity contamination and the effect of finite wire length was accounted for in the 
X-wire measurements. The mean temperature profiles were measured with a chromel- 
constantan thermocouple with a reference temperature maintained by a compensation 
unit. All data acquisition and analysis was done on a PDP 11/34 minicomputer. 
Further experimental details may be found in Sirivat (1983). 

3. The results 
First we shall present the salient characteristics of the velocity field and then we 

shall examine the transverse homogeneity of the thermal variance and heat flux. 
Finally the results of the evolution of the temperature variance, heat flux and related 
length- and timescale ratios for both the mandoline and toaster experiments will be 
presented. 

3.1. The  velocity Jield 

Figure 4 shows the decay rate for 2 and 2, the longitudinal and transverse 
mean-square velocity fluctuations, for the two different speeds studied : 3.4 m/s 
( R e ,  = 5150) and 6.3 m/s ( R e ,  = 9545). The normalized decay laws deduced from 
these data, as well as other parameters, are listed in table 1. Note (figure 4 and table 
1) that u/w is always greater than unity; at x / M  = 100, for example, it  is 
approximately 1.06. Thus there is slight anisotropy in the velocity field, as is usually 
observed in grid turbulence (Comte-Bellot -- & Corrsin 1966). Figure 5 shows the 
turbulence-energy dissipation rate e ( = v uzj, uzj)  determinedusing 3 different methods : 
differentiation of the energy decay law (6 = -&@/dt, where? = 2 + 2 2 ) ,  integration 
of the velocity spectrum (e = 7 . 5 ~ ~ ~  k2$,(k) dk, where $,(k) is the one-dimensional 
w-spectrum and k is wavenumber), and from the velocity derivative 
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decav of the longitudinal variance 2 and cross-stream variance 3: - - 
0 ,  m, u2 and 3 for U = 6 3  m/s; 0, 0,  2 and 3 for U = 3.4 m/s. See also table 1.  

M (m) 

2/UZ = A ( x / M ) - n  

3l.T = A ( x / M ) - n  

r.m.s. u (m/s) 
r.m.s. w (m/s) 
E = - $ ( d 7 / d t )  (ma/s3) 
1 = (Z)f/s (m) 
A, = ( ~ B v ~ / E ) !  (m) 

Re, = U M / v  
Re, = ul/v  
Re,, = & / v  

7 = ( v 3 i 4 i  (mf 

7. = 3U2/E ( 8 )  

U = 3.4 m/s 

0025 
1.29 
00664 
1-24 t : 00468 
449 x 10-2 
423 x 

1.71 x 

{: 

531  x 10-3 

9 7 0  x 10-3 
959 x 10-4 

5150 
465 
26.4 

1.14 

U = 6 3  m/s 

0025 
1.37 
01051 
1.29 
0062 
8 7 1  x 
806 x loV2 
3.93 x 10-2 
1.68 x 
691 x 10-3 
5.82 x 10-4 

9545 
889 
365 
058 

TABLE 1. Velocity flow parameters. The fluctuation parameters are 
calculated for x / M  = 100. v = 1.65 x m2/s. 

( E  = 1 5 ~ ( d u / d x ) ~ ) .  The good agreement among the three methods shows that using 
the assumption of isotropy for the velocity field, as is done for the integral and 
derivative methods, yields results close to the third method in which E is calculated 
directly from the rate of decay of the turbulence energy. Thus the assumption of 
isotropy is not a bad one. 

Figure 6 shows the evolution of the longitudinal integral lengthscale L. L was 
obtained by evaluating the autocorrelation function of u and integrating up  to its 
first zero and then using the Taylor ‘frozen’ assumption to convert time to length: 
L = UT, where U is the mean velocity and T is the integral of the autocorrelation 
function. There is indeed a large amount of scatter in these measurements, approx- 
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FIGURE 5. The decay of the turbulence-energy dissipation rate E .  0, E = 15~(du /dx)~ ;  
0,  E = 75v jr k2$, (k)dk;  solid line, E = -id?/&. (a) U = 34 m/s; ( b )  U = 6.3 m/s. 

imately & 7 % about the fitted line to the data. This is approximately the same scatter 
observed by Sreenivasan et aZ. (1980), which is marked on the figure. As was done 
by these workers, we will use a fitted line to these data when, in $3.3,  we compare 
values of the velocity integral scale with those of the thermal integral scale. 

3.2 .  The cross-stream thermal characteristics 
Figure 7 shows the cross-stream mean temperature for the mandoline ( 2 , l )  (the 
notation ' mandoline (x, y) ' means that the mandoline is placed x mesh lengths from 
the grid with y mesh lengths spacing between the wires). As with the previous workers 
(Wiskind 1962; Alexopoulos & Keffer 1971 ; Venkataramani & Chevray 1978) we 
achieved linear temperature gradients. Other gradients and mandoline configurations 
used ((2,2) and (10,l))  produced equally pleasing results. Figure 8 shows the 
cross-stream r.m.s. temperature profiles for the two mean profiles of figure 7. The 
scatter across the core of the flow (which is approximately 8 mesh lengths) is typically 
5 yo deviation about the mean once the flow has developed ( x / M  z 40). These profiles 
should be compared and contrasted with the profiles of the previous workers (who 
used heated grids), which are shown in figure 2. For the case ,8 = 7-48 OC/m we have 
also drawn the transverse r.m.s. 8 profile for x / M  = 15, i.e. for the region close to 
the grid. Here we see the effect of the differentially heated mandoline wires: there 
is a very strong gradient in r.m.s. 8 across the core of the flow since the hotter wires 
produce higher r.m.s. However, by x / M  = 40 a homogeneous profile is established. 
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FIGURE 6. Evolution of the longitudinal velocity lengthscale L derived from the longitudinal 
autocorrelation function. x , v, U = 3.4 m/s; V, + , U = 6 3  m/s (two different experiments for 
each speed). ---, best fit to the data;  -, Sreenivasan et al. (1980) ; 0, Yeh & Van Atta (1973). 
The vertical bar indicates the scatter of the measurements of Sreenivasan et al. (1980). 
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FIGURE 7. Some mean cross-stream temperature profiles for the mandoline (2 ,  I ) ,  U = 34 m/s. (a) 
p = 1-81 OC/m: 0, s / M  = 45; +, 75; X ,  115. (b)  ,i!? = ?,4SoC/m: 0, x / M  = 45; A, 65; 0, 115. 

For the heated grid experiments good homogeneity is never attained (figure 2). This 
may be in part due to the strong coherence between u and 0 that occurs in heated-grid 
experiments. The cross-correlation coefficient pue, between u and 0 for heated-grid 
experiments has been found to be as high as - 0 3  (Warhaft & Lumley 1978); ideally 
it should be zero. For the mandoline experiments pus is typically -0.05. 
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FIGURE 8. Transverse (cross-stream) r.m.s. @-homogeneity for the mandoline (2 , l ) .  (a) 
B = 7.48 OC/m, U = 3.4 m/s: x , x / M  = 15; 0,40; A, 80; 0,110.  (b )  B = 1.81 OC/m, U = 3.4 m/s: 
D, z / M =  50; V, 90; +, 126. 

Figure 9 shows the mean cross-stream temperature gradient for the toaster; as for 
the mandoline experiments a high degree of linearity was achieved. The example 
shown in figure 9 is for /3 = 10.3 "C/m, other gradients examined (10.0 OC/m and 
3.68 "C/m) gave the same degree of linearity. Figure 10 shows the transverse r.m.s. 
B for the toaster experiment. While there is some initial inhomogeneity, after 
x l m  x 100 there is only f 3 yo variation of r.m.s. 0 across the core of the flow, which 
is about 7 mesh lengths wide. 

Figure 11 shows the transverse profiles of Bw, 02w and e0 (see $3.3 for the method 
of determining e0) for mandoline (2, l ) ,  /3 = 7.48 OC/m. Apart from the good 
homogeneity of&and e0, figure 1 1 gives the rationale for neglecting the third-moment 

-~ 
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FIGURE 9. A mean cross-stream temperature profile for the toaster, 

U = 6.3 m/s: 0, x / M  = 65; 0, 115; A, 155. 

FIGURE 10. Transverse r.m.9. &homogeneity for the toaster, U = 6 3  m/s, 
/? = 103 OC/m: 0, x / M  = 60; 0, 110; A, 150. 
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FIQURE 11. Transverse homogeneity of second - and third-order quantities for the mandoline, 
U = 3 4  m/s, p = 7.48 C/m: 0, Ow ("Cm/s); A, e0 (OC2/s); 0, 82w ("CZ m/s). 

term (&d&/dz) in the B" budget. The highest possible value for this term that can 
be obtained from figure 11 is only a few per cent of the production term or rate term 
in ( 1 )  (see 53.3 for the values of these quantities). The molecular smearing term in 
the & budget has been neglected for the same reason; it is negligible compared with 
the other terms in (2) (Sirivat 1983). 
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0203 1.81 595 1.44 268 489 
0127 4 3  610 1.79 3.20 

0127 7.48 8.01 1.67 3.31 509 

0203 1.78 089 1.54 3.16 

- 
(2, 1) 
(231) 
(2>1) 0127 6 4  5.40 1.89 3 3  

(231) 0203 8.1 1.89 1.92 2.94 539 

(10,1) 0203 224 - 1.02 204 433 

- 

- 

TABLE 2. Some temperature-field parameters for the mandoline experiments. U = 3.4 m/s for all 
cases. A ,  the y-axis intercept (figure 12) was determined by a line of best fit to the data. The variance 
gradient (column 5 )  was also determined from a line of best fit. (For the case p = 7.48 OC/m the 
last two values (figure 12) were neglected.) The last three columns were determined for z / M  = 100. 

3.3. Evolution of the thermal jield 

3.3.1. The mandoline experiments. Figure 12 shows, for the mandoline (2, i), p//Ip" 
us. x / M  for 5 different values of /3 (varying from 1.81 OC/m to 8.1 "C/m), and table 
2 summarizes the salient characteristics of the data. Although there is some scatter, 
a straight line produces the best fit to the data, We have normalized the temperature 
variance by p", and this produces a reasonable collapse of the data. Note that (1) can 
be written in the form 

Below we shall report the production and dissipation terms in the form of (3) since 
these data, for various!, also collapse well using this normalization. The origin (figure 
12) is at x / M  x - 20 ; shifting this origin to  zero does not appreciably change the form 
ofthe trendin thedata. Figure 13 shows8"/P2for two further mandoline configurations, 
(2,2) and (10, l ) ,  and these are contrasted with one of the ( 2 , l )  cases. The dashed 
lines indicate that the thermal field was inhomogeneous. Note that for (2 ,2)  and (10,l)  
the temperature variance first decreases, and then i t  increases as production begins 
to dominate dissipation. This also occurred for the ( 2 , l )  cases (figure 12), but for these 
cases by x / M  = 40 production was more dominant than dissipation (we did not plot 
these early points (in the initially inhomogeneous flow) on the graphs of figure 12). 
Of course in all these experiments, there must be an initial p since we are introducing 
the temperature gradient by means of heating wires which also produce temperature 
fluctuations. Furthermore, by changing the initial mandoline configurations, we are 
changing the initial thermal to velocity lengthscale ratio (Warhaft & Lumley 1978).t 

Insight into the evolution of p in figure 13 may be gained by examining the 

t We note that mandoline ( 2 , l )  produces the lengthscale ratio closest to unity (see figure 14). 
(2,2) produces a slightly smaller thermal scale than (2, l),  a result contrary to expectation, which 
would suggest that a larger wire spacing should produce a larger scale (as always occurs when the 
mandoline is placed further downstream; (10,l)  produces a smaller scale than (10,2) for example). 
The anomalous behaviour when the thermal field is introduced very close to the grid (the same 
anomaly occurs for helium - Sirivat & Warhaft 1982) is probably due to the complex interaction 
of the thermal field with the strongly anisotropic velocity wake. Nevertheless (for /3 = 0) the positive 
correlation between faster decay rate and smaller input scale (Warhaft & Lumley 1978) is still 
maintained no matter where (or how) the scalar is introduced. Thus (2,2) has a higher decay rate 
than (2, 1 )  when p = 0 (Sirivat 1983). 
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FIQURE 13. p//3 for different mandoline configurations: + , mandoline (2, l ) ,  /3 = 7.48 OC/m (from 
figure 12), 0, (2,2), 1.78 OC/m; 0, (10, l ) ,  224 OC/m. U = 3 4  m/s in all cases. The dashed line 

indicates that the thermal variance had not yet reached homogeneity in the transverse direction. 
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FIQURE 14. Thermal/mechanical longitudinal lengthscale ratio L,/L for the mandoline experiments. 
(a) No-gradient case (/I = 0): +, mandoline (2, 1); 0,  (2, 2); 0, (10, I) .  ( b )  Gradient cases: +, 
mandoline (2, l) ,  p = 7.48 OC/m; @, (2, l ) ,  6 4  "C/m; 0,  (2, l ) ,  8.1 OC/m; 0, (2: 2), 1.78 "C/rn; 0, 
(10, l ) ,  2.24 OC/m. U = 3.4 m/s in all cases. 
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FIGURE 15. pew for the mandoline experiments. 0 ,  A, + : ,!? = 8.1, 1.81, 7.48 "C/m respectively, 
mandoline(2, l ) ,  U = 3 4  m/s. O,mandoline(Z, l),,!? = 448 OC/m, U = 6 3  m/s; 0, (2, 2), 1.78 OC/m, 
3.4 m/s; 0, (10, l ) ,  2.24 OC/m, 3.4 m/s. 

evolution of the thermal and mechanical lengthscales. Figure 14 (a )  shows Le/L, the 
ratio of the longitudinal thermal to velocity integral scales (deduced from the 
autocorrelation functions) for the cases in which p = 0 (i.e. decaying temperature 
variance). For mandoline ( 2 , l )  L,/L x 1,  but for (10 , l )  this ratio is initially 0-5. As 
the flow evolves for this non-gradient case the lengthscale ratio remains approximately 
constant (as was previously found by Warhaft & Lumley 1978). However, when the 
temperature gradient is imposed on the flow (figure 14b) the lengthscale ratio for the 
case (10, l )  is driven up to the equilibrium value for the case (2 , l ) .  This value is 
approximately 09 ,  although there is large scatter. It is quite clear, however, that, 
while in the absence of production (decaying p) the lengthscale ratio remains 
(approximately) a t  its initial value, with production present there is a trend to an 
equilibrium lengthscale ratio.? This value appears to  be around 0-9 (figure 14b). Thus 
the thermal gradient forces the lengthscale ratio to  a constant value, regardless of 
its initial value, which is determined by the mandoline configuration. When this value 
has been achieved, the production dominates the dissipation in the temperature 
variance budget and the increase in @/p2 is approximately linear (figure 13). 

Figure 15 shows the evolution of the cross-correlation Pew between 0 and w, where 
w is the velocity fluctuation in the direction of p. Here too we see that if there is a 
mismatch in the initial L,/L (mandolines (2,Z) and (10, I),  figure 14) the magnitude 
of Pew grows until it  reaches a constant value of -07,  while if the initial value of 
L,/L is approximately unity (mandoline (2, l ) ,  figure 14) then pew remains approxi- 
mately constant. The equilibrium value Pew = -07  should be compared with the 
lower values of -0-48 and - 0 6  reported by Wiskind (1962) and Venkataramani & 
Chevray (1978) respectively. However, as mentioned above, their flows had significant 
transverse inhomogeneity. Furthermore, the plot of e'i (figure 1 )  for their two 
experiments suggests that  the thermal field was still evolving, and thus pew may not 
have reached its equilibrium value. It will be shown below that the toaster, an entirely 

t There is, in fact, a slight increase in the lengthscale ratio for the mandoline (10, l ) ,  for the case 
without the temperature gradient (figure 14a). However, this increase is far less pronounced than 
for the case where the gradient is present (figure 14b). Sreenivasan et al. (1980) also find a gradual 
increase in L,/L for their (zero-temperature-gradient) heated-screen experiments in which the 
initial scalar scale was much smaller than the velocity scale. 
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FIQURE 16. (a )  Thermal eddy diffusivity for mandoline ( 2 , l ) .  ( b )  Thermal eddy diffusivity for 
mandoline (10,l)  (0 )  and mandoline ( 2 , 2 )  (0). The symbols are the same as for figure 15. 

different method of generating the temperature gradient, also produced a value of 

Figure 16 shows the evolution of KB (= -&/p), the thermal eddy diffusivity. For 
the mandoline ( 2 , l )  (figure 16a) its value decreases slowly with x / M ,  showing that 
the gradient-production term (2) does not quite keep pace with the return-to-isotropy 
term. Of course we would expect KO to decrease since the Reynolds number of the 
flow is slowly decreasing. I n  6 1 it  was shown that the turbulence Re is proportional 
to Pn, where n = 1.29 (table 1); the value of KO (figure 16a) is diminishing a t  
approximately this rate. We note also that the value of KO a t  x / M  = 100 is 
approximately 5 x lop4 m2/s; thus the ratio &/K, where K is the thermal diffusivity, 
is 22, and this is comparable to  the value of the turbulence Re (= ul /v ) ,  which is 46.5 
a t  this position. For the mandolines (2, 2) and (10, 1) the initial value of K ,  is lower 
than for (2, 1) (figure 16b),  as would be expected since pow is initially weak 
(figure 15), but after L,/L achieves its equilibrium value at about x / M  = 80 there is a 
gradual increase in K, for these two cases. 

Figure 17 shows the temperature-variance dissipation rate for the various mandoline 
experiments, determined by subtracting the production term from the rate term in 
(1). For the mandoline ( 2 , l )  (figure 17u) eS/p2 decreases a t  approximately the same 
rate as KO (figure 16a), but for the cases where the scalar is introduced at a 
significantly different lengthscale to the velocity lengthscale (mandolines (2,2) and 
(10,l)) the initial dissipation rate is higher (figure 17b), as is suggested by figure 13, 
but i t  rapidly decreases as the lengthscale ratio tends to its equilibrium value (figure 
14b) .  Figure 18 compares eO computed by means of the differencing method with eo 
computed using two methods that make the assumption of local isotropy. The three 
methods compare reasonably well (fitted curves would be within about 10 yo of each 
other), indicating that, although the large-scale thermal field is anisotropic (because 

pew % -0.7. 
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of the thermal gradient), the assumption of small-scale isotropy is still valid for this 
flow. It should be noted that this assumption cannot be generally made for the 
small-scale thermal field. For example, for flows with a mean velocity gradient as well 
as a mean temperature gradient, pronounced skewness of the temperature derivative 
is observed (Sreenivasan & Tavoularis 1980). I n  our experiments, the magnitude of 
the skewness of the temperature derivative was small (<  0.15). 
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FIGURE 19. The ratio of temperature variance produetion Ps to variance dissipation 
es for the mandoline experiments. Symbols are the same as figure 15. 

In  decaying grid turbulence with a mean temperature gradient there are three 
timescales : the velocity timescale 7 ( = PIE), the dissipation timescale of the thermal 
field 781 ( = 82/e8) and the production timescale of the thermal field rO2 ( = 821 -&/?). 
Figure 19 shows the thermal dissipation to thermal production timescale ratio r8JrO2 
(=  P8/e8, where Po = -&p) for all the mandoline experiments. For the mandoline 
(2, l ) ,  the situation in which the scalar is introduced a t  its approximate equilibrium 
lengthscale (figure 14), Po/eo has an approximately constant value of about 1.5 for 
all values of p ;  varying p not only reduces the production, i t  also reduces dissipation 
proportionately, maintaining this timescale ratio a t  1.5. For mandolines (2,2) and 
(10, l) ,  P8/e8 is initially less than unity, i.e. dissipation is initially more dominant than 
production (as is evident from figure 13), but, for these cases also, the ratio rises to 
a value of approximately 1.5 as equilibrium is attained. 

Another relevant timescale ratio is the mechanical dissipation to thermal dissipation 
ratio (?/c)/(@/e8), which is usually denoted by r (Warhaft & Lumley 1978). For 
decaying temperature fluctuations in grid turbulence r = m/n,  where n and m are the 
respective exponents of the power-law decays for velocity and temperature variance. 
Figure 20 shows r calculated for the gradient experiments. For the mandoline ( 2 , l )  
r x 1.3, although there is significant scatter between the various gradient cases 
(compare this with the timescale ratio Pole, (figure 19), where there is only about 5 yo 
scatter for the mandoline ( 2 , l )  cases). We note that, unlike the case of decaying 
temperature variance where r = m/n,  here the value of r (= (21%) t / (@/c8) ,  where t 
is real time from the grid) is critically dependent on absolute values of variance, and 
the scatter in figure 20 undoubtedly reflects cumulative calibration and measurement 
error rather than any trend. For the mandolines (2,2) and (10, l) ,  figure 20 shows 
that, as for the lengthscale ratio (figure 14 b )  and as for the ratio Po/s8 (figure 19), the 
gradient also drives r toward an equilibrium value if there is a mismatch in the initial 
thermal and velocity scales, although because of scatter, and also because r for (2,2) 
and r for (10, l )  have probably not yet reached their final value ( r  a t  x / M  = 150 still 
appears to be decreasing for these two cases), its precise equilibrium value cannot 
be determined from figure 20; i t  appears to be 1.4f0.2. 

The above experiments were carried out for three different mandoline configurations 
only ((2, i), (2,2) and (10,l)) .  An attempt was made to do a further experiment with 
the mandoline at (20, l ) ,  but the r.m.s. 6 remained inhomogeneous in the cross-stream 
direction for the full extent of the tunnel. This was probably due to the inability of 
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FIGURE 20. The mechanical/thermal timescale ratio r for the 
mandoline experiments. Symbols are the same as figure 15. 

the reduced turbulence intensity (at  x / M  = 20) to mix the initially inhomogeneous 
temperature variance produced by the differentially heated mandoline wires when 
they were placed this far downstream from the grid. (We note for the experiments 
where the mandoline was placed at x / M  = 2 a homogeneous transverse r.m.s. 0-profile 
was achieved by about x / M  = 40, but for the mandoline at x / M  = 10 i t  took until 
about x / M  = 80 to achieve a flat transverse r.m.5. &profile.) However the way in 
which such parameters as the thermal length- and timescales (figures 14, 19 and 20) 
and Pew (figure 15) asymptote towards equilibrium values for the above three different 
mandoline configurations suggests that  if the temperature gradient and temperature 
fluctuations could, in some way, have been established with an initial thermal 
lengthscale even smaller than that achieved with the mandoline a t  (10, l ) ,  the same 
equilibrium values for these parameters would have resulted, although their initial 
values would have been further from equilibrium than for the case (10,l) .  Thus we 
believe we have observed the essential features of the evolution of the thermal 
characteristics for this type of flow. It is also worth noting that although the 
mandoline was placed in the region of the flow in which the grid-bar wakes were still 
coalescing (homogeneity of the velocity field does not occur until about 15-20 mesh 
length from the grid), this did not appear to affect the nature of the fine-scale thermal 
field. By the downstream position where the measurements commence ( x / M  = 40) 
the skewness of the temperature derivative as well as the temperature-longitudinal- 
velocity cross-correlation coefficient were negligible, indicating that the thermal field 
was not affected by the large-scale structures of the grid bars (as was the case for 
heated-grid flows - Warhaft & Lumley 1978). 

3.3.2. The toaster experiments. Figure 21 shows the evolution of alp2 for 3 toaster 
experiments for whichp = 103  "C/m, 10.0 "C/m and 3-68 "C/m, and table 3 lists some 
of the data parameters. The mean speed was 6.3 m/s for these experiments. I n  order 
to compare these results with those of the mandoline (done a t  3.4 m/s) we have used 

>time ( = x /U ,  where U is the mean velocity) for the abscissa. The dashed line is the 
average value of the measurements of figure 12 (mandoline ( 2 ,  l ) ,  U = 3.4 m/s). Also 
included in the figure is a case for the mandoline (2, l ) ,  but with U = 6-3 m/s, the 
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FIGURE 21. @/PZ for the toaster experiments and for a further mandoline experiment; U = 6.3 m/s 
in all cases: 0, toaster, /3 = 103*C/m; 0, toaster, 100*C/m;  D, toaster, 3.68OC/m; X ,  

mandoline (2, l ) ,  4.48 OC/m. See also table 3. Dashed line is the average of the mandoline ( 2 , l )  
experiments, U = 3.4 m/s (figure 12). 

Toaster 3.68 562 237 2.45 897 
Toaster 100 3.86 2.30 2.2 1 - 

Toaster 103 7.39 1.83 2.19 7.84 
Mandoline ( 2 , i )  4.48 693  1-47 1.90 7-46 

TABLE 3. Some temperature-field parameters for the toaster experiments. I/ = 6.3 m/s for all cases. 
Also included is a mandoline ( 2 , l )  experiment done a t  the same speed (6.3 m/s). The last 3 columns 
were evaluated for x / M  = 100 ( t  = 0.397 s). A ,  the y-axis intercept (figure 21) was determined from 
a line of best fit to each data set. 

same speed as for the toaster experiments. The variance produced by the toaster also 
increases at an  approximately linear rate, which is slightly greater than that for the 
mandoline ( 2 , l ) .  

Figure 22 shows the lengthscale ratio L,/L for the toaster experiments and for the 
mandoline (2, l ) ,  U = 6 3  m/s. The equilibrium value is about 0.85, i.e. about the same 
value as for the mandoline experiments (figure 146). Of course for the toaster 
experiments we were unable to alter the initial value of L,/L since in these 
experiments the thermal lengthscale is produced solely by the turbulent mixing 
against the thermal gradient. As for the mandoline experiments the equilibrium value 



Evolution of temperature variance and heat flux in grid turbulence 343 

b [ $ g B f l  D 8 

I I I I I I 

0 40 80 I20 160 
xlM 

FIGURE 22. Lo/L for the toaster experiments, U = 6.3 m/s, and for mandoline (2, l ) ,  
U = 6.3 m/s. Symbols are the same as for figure 21. 
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FIGURE 23. eoU for the toaster experiments, U = 6 3  m/s: 
0, p = 103 "C/m; 0, 100 "C/m; A, 3.68 "C/m. 

of L,/L is independent of p. The cross-correlation pew between 8 and w is shown in 
figure 23. I ts  equilibrium value of approximately -0.68 is close to that of the 
mandoline experiments (figure 15). 

Figure 24 shows the eddy diffusivity and thermal dissipation rate for the toaster 
and for the mandoline (2, l ) ,  U = 6.3 m/s. These values should be compared with 
those of the mandoline (2, l ) ,  slow speed (figures 16a, 17a). For the fast speed (figure 
24) both K, and ee/P2 have increased, reflecting the higher turbulence Reynolds 
number (table 1 ) .  They also tend to decrease a t  a slightly faster rate than for the 
slow-speed case. The reason for this, and for the slightly faster rate of increase of@/p2 
(figure 21) is not clear. 

Finally we present the timescale ratios for the toaster experiments (figure 25). Pole, 
(figure 25a) has a value of 1.4 at x / M  = 150, a value in good agreement with that 
of the equilibrium value of 1.5 for the mandoline experiments (figure 19). We note 
that, a t  x / M  = 150, Poleo is still gradually increasing for the toaster experiment. This 
may be due to the higher speed used in this experiment; because the speed was nearly 
twice that used for the mandoline experiments, by x / M  = 150 the elapsed time is 
only half that of the slow-speed mandoline experiments and the field may not yet 
be a t  its equilibrium value. r for the toaster (and for the mandoline (2, l ) ,  U = 6.3 m/s) 
is shown in figure 25(b). As for the slow-speed mandoline cases (figure 20), there is 
fairly large scatter. The average value appears to be 1.6k0.2; slightly higher than 
r for the slow-speed mandoline experiments. 
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FIGURE 24. (a) Eddy diffusivity KO and (b )  temperature-variance dissipation rate .O/p' 

for the same experiments as figure 21. Symbols are the same as for figure 21. 
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FIQURE 25. (a) The ratio of temperature-variance production PO to temperature-variance dissipation 
€0, and ( b )  the mechanical/thermal timescale ratio r for the same experiments as figure 21. Symbols 
are the same as for figure 21. 
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4. Conclusions 
We have described two new methods for producing a linear temperature gradient 

in decaying grid-generated turbulence. Both methods produced good transverse 
homogeneity in the thermal field, in contrast with the experiments of previous 
workers using heated grids. For the mandoline experiments we have shown that the 
temperature gradient forces the lengthscale ratio L,/L and the timescale ratios 
(F/€e)/(F/Po) and (?/E)/(F/€e) to equilibrate to constant values ; values that are 
independent of the magnitude of the gradient /3. The variation of initial magnitudes 
of these ratios was effected by varying the mandoline configuration. Once the 
equilibrium length- and timescale ratios had been established the temperature 
variance grew linearly with time. 

For the toaster, which produces a temperature gradient, but for which the 
temperature variance is produced solely by the action of turbulence production 
against this gradient (in contrast with the mandoline, whose wires produce an initial 
temperature variance as well as a gradient), the values of length- and timescale ratios 
were similar to those of the equilibrium values produced by the mandoline, and the 
temperature variance also grew linearly with time, although a t  a slightly higher rate 
than for the mandoline. 

The equilibrium values for the ratio of the thermal/mechanical lengthscale and 
thermal variance production/dissipation are approximately 0.9 and 1.5 respectively 
for all the experiments reported here, regardless of how the gradient was produced. 
The equilibrium value for the mechanical/thermal timescale ratio r is less certain; 
although there is a tendency for it to  equilibrate there is considerable scatter in the 
data for this quantity. It appears to  be approximately 1.4 for the mandoline 
experiments, but slightly higher (about 1.6) for the toaster experiments, although for 
the latter case the field may not have reached final equilibrium because of the shorter 
elapsed time (faster speed) of this experiment. 

The above results should be contrasted with the thermal-variance evolution in 
decaying grid turbulence without gradient production (Warhaft & Lumley 1978). I n  
that case the thermal/mechanical lengthscale ratio did not change with time and 
there was no equilibrium value for the thermal-variance decay rate. We note that 
in a previous experiment (Warhaft 1980) we attempted to force L,/L to an 
equilibrium value by applying mean strain to the field, but this had the effect of 
driving the system further from equilibrium. 
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Engineering Section and Atmospheric Section of the U.S. National Science 
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